skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Butler, Bryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present best-fit values of porosity—and the corresponding effective thermal inertiae—determined from three different depths in Europa’s near-subsurface (∼1–20 cm). The porosity of the upper ∼20 cm of Europa’s subsurface varies between 75% and 50% (Γeff≈ 50–140 J m−2K−1s−1/2) on the leading hemisphere and 50%–40% (Γeff≈ 140–180 J m−2K−1s−1/2) on the trailing hemisphere. Residual maps produced by comparison with these models reveal thermally anomalous features that cannot be reproduced by globally homogeneous porosity models. These regions are compared to Europa’s surface terrain and known compositional variations. We find that some instances of warm thermal anomalies are co-located with known geographical or compositional features on both the leading and trailing hemisphere; cool temperature anomalies are well correlated with surfaces previously observed to contain pure, crystalline water ice and the expansive rays of Pwyll crater. Anomalous regions correspond to locations with subsurface properties different from those of our best-fit models, such as potentially elevated thermal inertia, decreased emissivity, or more porous regolith. We also find that ALMA observations at ∼3 mm sound below the thermal skin depth of Europa (∼10–15 cm) for a range of porosity values, and thus do not exhibit features indicative of diurnal variability or residuals similar to other frequency bands. Future observations of Europa at higher angular resolution may reveal additional locations of variable subsurface thermophysical properties, while those at other wavelengths will inform our understanding of the regolith compaction length and the effects of external processes on the shallow subsurface. 
    more » « less
  2. Abstract We present a thermal observation of Callisto's leading hemisphere obtained using the Atacama Large Millimeter/submillimeter Array at 0.87 mm (343 GHz). The angular resolution achieved for this observation was ∼0.″16, which for Callisto at the time of this observation (D∼ 1.″05) was equivalent to ∼six elements across the surface. Our disk-integrated brightness temperature of 116 ± 5 K (8.03 ± 0.40 Jy) is consistent with prior disk-integrated observations. Global surface properties were derived from the observation using a thermophysical model constrained by spacecraft data. We find that models parameterized by two thermal inertia components more accurately fit the data than single thermal inertia models. Our best-fit global parameters adopt a lower thermal inertia of 15–50 J m−2K−1s−1/2and a higher thermal inertia component of 1200–2000 J m−2K−1s−1/2, with retrieved millimeter emissivities of 0.89–0.91. We identify several thermally anomalous regions, including spots ∼3 K colder than model predictions colocated with the Valhalla impact basin and a complex of craters in the southern hemisphere; this indicates the presence of materials possessing either a higher thermal inertia or a lower emissivity. A warm region confined to the midlatitudes in these leading hemisphere data may be indicative of regolith property changes due to exogenic sculpting. 
    more » « less
  3. Abstract We use Atacama Large Millimeter Array (ALMA) measurements of 870μm thermal emission from a sample of midsized (15–40 km diameter) Jupiter Trojan asteroids to search for high-albedo objects in this population. We calculate the diameters and albedos of each object using a thermal model which also incorporates contemporaneous Zwicky Transient Facility photometry to accurately measure the absolute magnitude at the time of the ALMA observation. We find that while many albedos are lower than reported from WISE, several small Trojans have high albedos independently measured both from ALMA and from WISE. The number of these high-albedo objects is approximately consistent with expectations of the number of objects that recently have undergone large-scale impacts, suggesting that the interiors of freshly-crated Jupiter Trojans could contain high-albedo materials such as ices. 
    more » « less
  4. null (Ed.)
  5. Abstract We present the localization and host galaxies of one repeating and two apparently nonrepeating fast radio bursts (FRBs). FRB 20180301A was detected and localized with the Karl G. Jansky Very Large Array to a star-forming galaxy at z = 0.3304. FRB20191228A and FRB20200906A were detected and localized by the Australian Square Kilometre Array Pathfinder to host galaxies at z = 0.2430 and z = 0.3688, respectively. We combine these with 13 other well-localized FRBs in the literature, and analyze the host galaxy properties. We find no significant differences in the host properties of repeating and apparently nonrepeating FRBs. FRB hosts are moderately star forming, with masses slightly offset from the star-forming main sequence. Star formation and low-ionization nuclear emission-line region emission are major sources of ionization in FRB host galaxies, with the former dominant in repeating FRB hosts. FRB hosts do not track stellar mass and star formation as seen in field galaxies (more than 95% confidence). FRBs are rare in massive red galaxies, suggesting that progenitor formation channels are not solely dominated by delayed channels which lag star formation by gigayears. The global properties of FRB hosts are indistinguishable from core-collapse supernovae and short gamma-ray bursts hosts, and the spatial offset (from galaxy centers) of FRBs is mostly inconsistent with that of the Galactic neutron star population (95% confidence). The spatial offsets of FRBs (normalized to the galaxy effective radius) also differ from those of globular clusters in late- and early-type galaxies with 95% confidence. 
    more » « less
  6. null (Ed.)